High-Density Genetic Linkage Map Construction and QTL Mapping of Grain Shape and Size in the Wheat Population Yanda1817 × Beinong6
نویسندگان
چکیده
High-density genetic linkage maps are necessary for precisely mapping quantitative trait loci (QTLs) controlling grain shape and size in wheat. By applying the Infinium iSelect 9K SNP assay, we have constructed a high-density genetic linkage map with 269 F 8 recombinant inbred lines (RILs) developed between a Chinese cornerstone wheat breeding parental line Yanda1817 and a high-yielding line Beinong6. The map contains 2431 SNPs and 128 SSR & EST-SSR markers in a total coverage of 3213.2 cM with an average interval of 1.26 cM per marker. Eighty-eight QTLs for thousand-grain weight (TGW), grain length (GL), grain width (GW) and grain thickness (GT) were detected in nine ecological environments (Beijing, Shijiazhuang and Kaifeng) during five years between 2010-2014 by inclusive composite interval mapping (ICIM) (LOD ≥ 2.5). Among which, 17 QTLs for TGW were mapped on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 3D, 4A, 4D, 5A, 5B and 6B with phenotypic variations ranging from 2.62% to 12.08%. Four stable QTLs for TGW could be detected in five and seven environments, respectively. Thirty-two QTLs for GL were mapped on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6B, 7A and 7B, with phenotypic variations ranging from 2.62% to 44.39%. QGl.cau-2A.2 can be detected in all the environments with the largest phenotypic variations, indicating that it is a major and stable QTL. For GW, 12 QTLs were identified with phenotypic variations range from 3.69% to 12.30%. We found 27 QTLs for GT with phenotypic variations ranged from 2.55% to 36.42%. In particular, QTL QGt.cau-5A.1 with phenotypic variations of 6.82-23.59% was detected in all the nine environments. Moreover, pleiotropic effects were detected for several QTL loci responsible for grain shape and size that could serve as target regions for fine mapping and marker assisted selection in wheat breeding programs.
منابع مشابه
Mapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers
Mineral nutrient malnutrition, particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Biofortification of food crops is the best approach for conciliating the micronutrient deficiencies. Understanding the genetic basis of their accumulation is the preconditions for enhancing of these micronutrients. In our study, a mapping population of a set of 118 recombinant inbr...
متن کاملIdentification of QTLs for grain yield and some agro-morphological traits in sunflower (Helianthus annuus L.) using SSR and SNP markers
Many agriculturally important traits are complex, affected by many genes and the environment. Quantitative trait loci (QTL) mapping is a key tool for studying the genetic structure of complex traits in plants. In the present study QTLs associated with yield and agronomical traits such as leaf number, leaf length, leaf width, plant height, stem and head diameter were identified by using 70 recom...
متن کاملGenetic Linkage Map of Glu-D1 and Allelic Variation of HMW Glutenin Subunits in Some Iranian Bread Wheat genotypes
High-molecular weight (HMW (glutenin subunits are encoded by the Glu-1 loci (Glu-A1, Glu-B1 and <sp...
متن کاملDevelopment of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat
High-density genetic linkage maps of crop species are particularly useful in detecting qualitative and quantitative trait loci for important agronomic traits and in improving the power of classical approaches to identify candidate genes. The aim of this study was to develop a high-density genetic linkage map in a durum wheat recombinant inbred lines population (RIL) derived from two elite wheat...
متن کاملLinkage Map Construction for Silkworm (Bombyx mori L.) Based on Amplified Fragment Length Polymorphism Markers
The domesticated silkworm, Bombyx mori, is of high commercial importance as a silk producer and is also widely used for implementation of basic and applied research. It is important to understand its genome organization using molecular markers for genetic studies and for breeding purposes. In this study, a genetic linkage map using 204 amplified fragment length polymorphism (AFLP) markers was d...
متن کامل